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Abstract
We study the problem of chaos in temperature in some mean-field spin-glass
models by means of a replica computation over a model of coupled systems. We
propose a set of solutions of the saddle point equations which are intrinsically
non-chaotic and solve a general problem regarding the consistency of their
structure. These solutions are relevant in the case of uncoupled systems
too. Therefore they imply a non-trivial overlap distribution P (qT 1T 2) between
systems at different temperatures. The existence of such solutions is checked
to fifth order in an expansion near the critical temperature through highly non-
trivial cancellations, while it is proved that a dangerous set of such cancellations
holds exactly at all orders in the Sherrington–Kirkpatrick (SK) model. The
SK model with soft-spin distribution is also considered, obtaining analogous
results. Previous analytical results are discussed.

PACS numbers: 7510, 0550

1. Introduction

In this paper we shall address by analytical means the problem of the correlations between
the equilibrium states at different temperatures of the Sherrington–Kirkpatrick (SK) spin-glass
model. At any temperature below the critical one there are infinitely many pure states defined
by the local values of the magnetization. The correlation between two states are measured by
the overlap qαβ = ∑

i mα
i m

β

1 which, according to the Parisi solution, can take values between
zero and some qEA, which is the self-overlap of the states [1].

While pure states at a given temperature are correlated, for many years it was believed that
states at different temperatures were completely uncorrelated: this is the hypothesis of chaos
in temperature. It was originally phrased as a constitutive ingredient of the phenomenological
droplet theory [8, 9], because otherwise the growth of domains of correlated phases would
give strong cooling rate dependence and would not exhibit the so-called rejuvenation effect.
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Contrary to this, real spin glasses are, to a large extent, insensitive to the cooling rate;
furthermore, if we let an observable relax at a given temperature in the glassy phase and
then lower the temperature we observe that its value skips to a higher value and the system
apparently rejuvenates. So everything seems to happen as if there were great changes in the
free-energy landscape, i.e. chaos in temperature.

A few years after the first observations of this phenomenon [2], it was discovered that,
when the sample is heated back to the original temperature, the observable resumes the value it
had immediately before the second quench [3]; therefore, while the first effect suggests that the
information belonging to aging at a higher temperature is destroyed upon cooling the system
(the chaos effect), the second one implies no information loss at all (the memory effect). The
two effects are apparently contradictory and their explanation, particularly from a real-space
point of view, attracts great interest [4–6].

At the mean-field level it was shown that the equations of dynamics capture the physics
of the two phenomena [7].

From a phase-space point of view it seems rather difficult that a purely chaotic picture of the
temperature evolution of the free-energy landscape could account for both chaos and memory
effects and this is the main reason for our analysis of the equilibrium states correlations. We
must be careful on this point since the theoretical work of the last ten years has raised many
questions on the possibility of explaining off-equilibrium dynamics by means of the static
mean-field free-energy landscape [10]. At any rate, the ideas arising from the Parisi solution
of the mean-field SK model have often proved to be very fruitful, for example in constructing
phase-space pictures of dynamics like the traps model [11]. In particular a scenario, which had
been suggested as soon as the ultrametric organization of the states was discovered [12], was
advocated in order to explain the rejuvenation and memory effects [13]. This scenario deals
with the idea that each valley in the free-energy landscape bifurcates into many others when the
temperature is lowered, so that rejuvenation is accounted for by equilibration between the newly
born valleys, while memory is due to the fact that the topological structure of the states tree is
preserved. The explanation of the two effects in this picture is completely different from the
chaotic one and is supported by the fact that both rejuvenation and memory have been observed
in numerical simulations on an intrinsically non-chaotic model such as the GREM [14].

Our concern here is confined to checking the existence of correlations between equilibrium
states at different temperatures. We do not purport to give a full description of the structure,
if any, of such correlations but merely to collect evidence that they do exist, in contrast to the
chaos hypothesis.

Chaos is known to hold in mean-field models with different magnetic fields, while the
case of equal temperatures has been treated by Sompolinsky in an unpublished work cited by
Binder and Young in their 1986 review [15]. In that context it is claimed that there is chaos
in temperature in mean-field spin glasses; we do not agree with these findings as we shall
explain at the end of section 2. Kondor in 1989 addressed a related problem, i.e. the spatial
correlations between different temperature states in finite-dimensional spin glasses. Since
chaos was generally accepted at the time he was quite surprised in finding such correlations
to be infinitely long-ranged at zero-loop order [16], a result that is deeply connected to our
own. However, later Kondor and Végsö showed that at one-loop order the correlation length
becomes finite [17].

The problem has also been studied by means of numerical simulations [18–20]; our
findings are in agreement with the recent work of Marinari and Billoire [21]. The existence
of correlations at different temperatures is well shown numerically; the problem is rather that
rejuvenation is not seen in simulations of realistic spin-glass models [22]. Correlations between
states at different temperatures have recently been studied also within the TAP approach [23].
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This paper is organized as follows. In the next section we shall present the model of
coupled replicas of a SK spin glass and discuss its relevance to the problem of chaos. In
section 3 we shall write down the saddle-point (SP) equations and propose a set of solutions
with a certain structure. The validity of such solutions has been checked perturbatively to fifth
order in the order parameter and it turned out that they are non-chaotic, i.e. their free energy
at this order is the same as in the uncoupled case. We prove that at all orders these solutions,
if they exist, are non-chaotic, showing that this property relies on their structure. Therefore
the problem is to check whether the SP equations can be solved at all orders with solutions of
these kind. To this extent we provide in section 4 an exact result concerning a particular set
of cancellations in the SP equations, showing that they are verified at all orders. This result is
connected with Kondor zero-loop expansion in replica field theory. However, the possibility
of solving the SP equations with the solutions we propose also relies on other concellations,
and we are not able to prove that all these cancellations actually hold at all orders.

Since the problem is to check whether the solutions we propose actually exist at all orders,
in section 5 we investigate a mechanism that could lead to a breakdown of the scheme at higher
orders. The essential features of the problem can be explained starting from the SP equations.
As we will see in section 3, the SP equations involve three n × n matrices Q1, Q2 and P

that will be parametrized in the standard Parisi form. For instance, the SP equation obtained
differentiating the free-energy functional with respect to Q1 has the form

τ1Q1ab − Bab(Q1, Q2, P ) = 0. (1)

Now, a necessary condition to solve the previous equation is that the second term B must have
the same structure as the first term Q1: this is what we call structural consistency. Translated
into the language of Parisi matrices, it means that if the function q1(x) has a plateau for x

greater than some x1 max the function b(x) must have a plateau for x greater than the same
x1 max. For the standard Parisi solution it is easily seen that this is true because B is a function
only of Q1, but in our case B depends also on Q2 and P . If the functions q1(x), q2(x) and
p(x) have different structures, i.e. they display a plateaux of unequal length located at different
positions, as in our case, it is not trivial that b(Q1, Q2, P )(x) has the same structure of q1(x).
We will see that, in general, this is not true. However, we will prove that, when the three
functions q1(x), q2(x) and p(x) have the structure we propose for them, the function b(x)

has the same structure of q1(x), i.e. our solutions fullfil the necessary condition to solve the
previous SP equation.

This result is very general and it prevents the solutions we propose from breaking down
due to structural inconsistencies. However, it only states that Bab(Q1, Q2, P ) has the same
structure as Q1, but does not say if it is really possible to tune the three functions q1(x), q2(x)

and p(x) in such a way that Bab(Q1, Q2, P ) is exactly equal to τ1Q1ab in order to solve the
SP equation (1). The arguments provided in sections 4 and 5 are two necessary conditions
for the existence of non-chaotic solutions; they are completely independent since the first is
quantitative while the second is qualitative. However, neither of them is sufficient to prove
that the solutions actually exist at all orders.

In section 6 the generalization of the SK model with soft spins will be studied, again
showing the absence of chaos. In section 7 we give our conclusions. The solutions are
reported in the appendix.

2. The model

We consider a system composed of two replicas of a SK spin-glass model constrained to have
fixed values of their mutual overlaps. This model was first studied in the case of replicas of
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the same temperature [24]; here, we shall use the generalization to replicas with two different
temperatures below the critical one [20]. Denoting by Sr

i the ith spin of the rth replica, we fix
a constraint

qc = 1

N

N∑
i=1

S1
i S2

i (2)

where N is the total number of spins. Including the temperature difference, the Hamiltonian
of the system is

H = −
∑
i<j

Jij (β1S1
i S1

j + β2S2
i S2

j ). (3)

So we take the same realization of the quenched {Jij } for the two systems. They are chosen
with Gaussian probability, zero mean and variance 1

N
. The partition function is restricted to

those spin configurations that satisfy (2). The constraint (2) is implemented introducing a
Lagrange multiplier ε:

Z =
∑

{S1
i ,S2

i }

∫ i∞

−i∞

dε

2π
exp

[
− H − ε

( N∑
i=1

S1
i S2

i − Nqc

)]
. (4)

Instead of fixing the constraint qc we can consider the partition function corresponding to the
following Hamiltonian:

H(ε) = −
∑
i<j

Jij (β1S1
i S1

j + β2S2
i S2

j ) − ε

N∑
i=1

S1
i S2

i . (5)

This corresponds to systems coupled by a forcing term which selects configurations with higher
overlap. In the thermodynamic limit the two descriptions are obtained one from the other by
a Legendre transformation. In particular, defining F = − ln Z the following relation holds:

ε = ∂F (qc)

∂qc
. (6)

Introducing replicas to average over the disorder we obtain via standard manipulation the
average partition function to the power n:

Zn = SP exp

[
N

4
β2

1 Tr Q2
1 +

N

4
β2

2 Tr Q2
2 +

N

2
β1β2 Tr P 2

−N ln Z[Q̂] − Nqc

∑
α

εα − N

2

∑
α

(
ε2

α

β1β2
− 2Pααεα

)]
(7)

Z[Q̂] =
∑

{S1
α,S2

α}
exp

[
1
2 β2

1

∑
αβ

Q1αβS1
αS1

β + 1
2 β2

2

∑
αβ

Q2αβS2
αS2

β + β1β2

∑
αβ

PαβS1
αS2

β

]
(8)

where by SP we mean the value computed at the SP with respect to the set {εα} and to the order

parameter which is a 2n × 2n matrix Q̂ =
(

Q1 P

P t Q2

)
. The SP equations are then

Q1αβ = 〈S1
αS1

β〉 Q2αβ = 〈S2
αS2

β〉
Pαβ = 〈S1

αS2
β〉 +

1

β1β2
εαδαβ εα = β1β2(Pαα − qc)

(9)

where the square brackets mean the average taken with respect to the Hamiltonian

H = 1
2 β2

1

∑
αβ

Q1αβS1
αS1

β + 1
2 β2

2

∑
αβ

Q2αβS2
αS2

β + β1β2

∑
αβ

PαβS1
αS2

β. (10)
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The SP equation in the unconstrained case can be obtained by setting ε to zero and neglecting
the last equation in (9). We eliminate the Lagrange multipliers {εα} in (7) by replacing their
SP values. This gives, for the ε-dependent term in Zn,

−Nqc

∑
α

εα − N

2

∑
α

(
ε2

α

β1β2
− 2Pααεα

)
= N

β1β2

2

∑
α

(Pαα − qc)
2. (11)

To solve the model we need a variational ansatz for the matrices Q1, Q2, and P . We choose
each of them to be a Parisi hierarchical matrix: in particular this fixes Pαα = pd and εα = ε

for any replica index α.
Let us comment on the relevance of this model to the problem of chaos. The mathematical

formulation of the chaos hypothesis is

〈Si〉T 1〈Si〉T 2 = 0. (12)

That is, any two equilibrium states at different temperatures have zero overlap. Now, the
absence of chaos would imply that there are pure states at different temperatures with non-zero
overlap, so that we would have a non-trivial function P (qT 1T 2) that measures the probability
of finding an overlap q between two pure states of systems at different temperatures, weighed
according to the Gibbs measure. Turning to our model, we see that, if we choose the constraint
inside the support of the function P (qT 1T 2), the only effect will be to select those couples of
pure states that satisfy the constraining relation. As the number of pure states grows less than
exponentially with N , selection of only some couples of pure states, instead of all, will not
change the free energy or other extensive quantities. So, in the absence of chaos we expect to
find for some values of the constraint the same values of the free energy as in the unconstrained
case (i.e. the sum of the free energies of the two uncoupled systems) while in the presence of
chaos the free energy could increase.

So far we have established that an increase in free energy implies chaos, but what if we
find no such increase? Let us show that this would imply a nontrivial P (qT 1T 2), i.e. absence
of chaos. Suppose we find a set of solutions with the same free energy of the unconstrained
case corresponding to values of the constraint qc spanning an open set from zero to some pmax;
then from (6) we find that, for all these solutions, the relation ε = 0 holds. Looking at the
expressions of the free energy and of the SP equations (9) we see that ε = 0 implies that these
solutions solve the unconstrained two-system problem too. Now, it is well known that the
P (q) of the single-system problem can be reconstructed from the matrix Q used to evaluate
the free energy [1]. One then finds the following relations:

q(k) =
∫

qkP (q) dq = lim
n→0

Qk
αβ (13)

where the bar denotes average over all the solutions of the SP equation. Indeed, when replica
symmetry is broken there is always more than one solution; given one of them, others can
be obtained by permutations of the replica indices. Following the same steps one can show

that the function P (qT 1T 2) can be obtained from the order parameter Q̂ =
(

Q1 P

P t Q2

)
of the

unconstrained two-system problem through the relations

q
(k)
T 1T 2 =

∫
qk

T 1T 2P (qT 1T 2) dqT 1T 2 = lim
n→0

P k
αβ. (14)

Again the bar means average over all the solutions of the SP equations; we have, of course, the
solution P = 0, Q1 = Q1free, Q2 = Q2free, but, contrary to what is sometimes stated, nothing
forbids the existence of solutions with a nonzero P . By looking at (14) we see that we may not
know all the solutions or how to average over them but what we do know is that the existence
of solutions with P �= 0 implies a nontrivial P (qT 1T 2).
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As stated above, solutions of the constrained two-system model with the same free energy
of the unconstrained one are solutions of the latter as well, so we can safely say that if these
solutions exist there is no chaos in temperature, while, if they do not, pure states at different
temperatures are completely uncorrelated.

The fact that non-chaotic solutions of the constrained two-system problem are also
solutions of the unconstrained problem is very important. As we saw, by this argument we
can safely claim that if these solutions exist the P (qT 1T 2) is non-trivial. Instead it will be
dangerous to infer a non-trivial P (qT 1T 2) only from the fact that the free energy per spin in
the constrained case is equal to the sum of the free energy of the two uncoupled systems. We
shall describe a situation where this recipe could lead to wrong results.

The spin-glass pure states have all the same free energy per spin but their relative weights,
due to the correction of order 1/N , are very different and only a few states are relevant for
physical quantities like the P (q).

Now let us imagine a situation of weak chaoticity where the two complete sets of states at
different temperatures are strongly correlated but the corrections of order 1/N are completely
reshuffled: the few relevant states at T2 are located in a different portion of the phase space from
that of the relevant states at T1. Therefore, in this situation we must have a trivial P (qT 1T 2),
i.e. a delta function centred at zero. At the same time we will also have (non-relevant) states
with a non-zero overlap between them. A non-zero constraint will select those couples of
non-relevant states yielding the same free energy per spin of the unconstrained case, inducing
one wrongly to think that the support of the P (qT 1T 2) is non-zero, i.e. that there is no chaos in
temperature, while we assumed at the beginning that chaos in temperature, although weak, is
present.

The fact that there is a direct connection between the constrained and unconstrained cases
ensures that the weak chaoticity picture described above is not possible and that by studying the
constrained problem we always obtain sound physical information on the function P (qT 1T 2)

of two uncoupled systems.
Let us discuss the results reported in [15]; rephrased in the context we have discussed,

the method consists in studying the unconstrained problem, expanding the free-energy
functional (7) as follows:

F (Q̂) = F (0)(Q̂) + %T F (1)(Q̂) + %T 2F (2)(Q̂) + · · · (15)

where F (0) is the functional at equal temperatures and %T , the temperature difference, is
assumed to be small.

The unperturbed equal-temperature case is readily solved: the Parisi solution in its standard
single-system form corresponds to Q1 = Qstandard, Q2 = Qstandard, P = q(0) = 0. The
symmetry between the two systems definitely implies that solutions with a non-zero P can
be obtained from the standard one by proper permutations of the replica indices. Now, the
perturbing terms in (15) break the symmetry between the two systems and one has to check
whether they remove the degeneracy in free energy of the solutions.

The free energy of each solution is evaluated in powers of %T substituting in (15) the
zero-order equal-temperature solutions; by this procedure a free-energy difference to second
order in %T is found. However, to second order one must consider the contribution to F that
belongs to the splitting of the zero-order solution. Explicitly one must add the term

%T 2 ∂F (1)

∂Q̂ab

(D2F (0))−1
ab,cd

∂F (1)

∂Q̂ab

∣∣∣∣
Q̂=Q̂(0)

. (16)

This term too is not permutationally invariant; therefore, it might cancel the one belonging to
the expansion of F . While F (1) has a simple expression evaluating exactly (16) it is impossible
with our present knowledge.
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However, the whole procedure seems unreliable for more general reasons. For instance, if
we try to apply it to the standard single-system case we face the problem of the non-analytical
temperature dependence of the Parisi solution q(x) caused by the presence of the plateau. If we
think in terms of the hierarchical replica-symmetry breaking (RSB) scheme it can be realized
that, by trying to construct a solution starting from a different-temperature one, we obtain a
solution with the same breakpoint, i.e. a wrong one.

3. Non-chaotic solutions

Near the critical temperature the order parameter is expected to be small so that one can expand
the SP equations (8) in powers of Q̂ and then obtain approximate solutions in powers of the
reduced temperature τ = Tc − T .

By means of standard manipulations and a proper temperature-dependent rescaling of the
order parameter (β2

1 Q1 → Q1, β2
1 Q2 → Q2, β1β2P → P ) we obtain the free energy up to

fifth order

F (Q̂) = − lim
n→0

1

2

{
τ1 Tr Q2

1 + τ2 Tr Q2
2 + 2τ12 Tr P 2 +

ω

3
Tr Q̂3

+
u

6

∑
ab

Q̂4
ab +

v

4
Tr Q̂4 − y

2

∑
abc

Q̂2
abQ̂2

bc +
z

5
Tr Q̂5

−s
∑
ab

Q̂2
ab(Q̂3)aa +

2

3
t
∑
ab

Q̂3
ab(Q̂2)ab +

n

2
(pd − qc)

2

}
(17)

where

τ1 = 1 − T 2
1

2
τ2 = 1 − T 2

2

2
τ12 = 1 − T1T2

2
. (18)

In the SK model we have ω = u = v = y = z = s = t = 1. The only term that explicitly
depends on the constraint is (pd −qc)

2 = ε2, so that a general strategy often employed is to fix
the diagonal term in P and to solve the SP equations belonging to the remaining components
in Q̂. By this procedure we obtain a solution corresponding to the constraint

qc = pd − ∂Ffree(Q̂)

∂pd

. (19)

We skip the expressions of the SP equations expanded to fifth order in Q1, Q2 and P . To a
lower order they are reported in equations (36) and (37).

A first attempt to solve the equations was to set all the components of P as constant. This
ansatz has a positive free-energy cost, i.e. chaos, independently of the temperature difference;
however, we know that non-chaotic solutions exist for equal temperatures [24]. For this
reason we have tried an ansatz for Q̂ that could reproduce these solutions in the limit of equal
temperatures.

In the case of equal temperatures the solutions of the constrained problem are represented
in figure 1; they display full RSB in the matrix P and have a rather simple structure:

q2(x) = q1(x) pd = qc for all x

q1(x) = p(x) = qfree(2x) 0 � x � 1
2 xfree(pd)

q1(x) = p(x) = pd
1
2 xfree(pd) � x � xfree(pd)

q1(x) = qfree(x) p(x) = pd xfree(pd) � x � 1

(20)

where qfree(x) is the free Parisi solution and xfree(q) is its inverse. The diagonal terms in P are
equal to the constraint, i.e. qc = pd . These solutions exist for any value of qc in the support
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Figure 1. A qualitative sketch of the solutions in the isothermal case: q1(x) = q2(x) = q(x) for
all x; p(x) = q(x) = qfree(2x) for x < xc, for x > xc p(x) remains constant and equal to qc while
q(x) after an intermediate plateau is joined continuously to qfree(x); qc can take values between
zero and qEA. The diagonal value of P is equal to the constraint, i.e. pd = qc.

of the function P (q) and have exactly the same free energy of the free case; actually, it can be
shown that they are particular permutations of the free single-system solution [27].

We want to remark that the structure of these solutions is intrinsically non-chaotic due to
the equality p(x) = pd for x > xc. Indeed the SP equations are

Q1αβ = 〈S1
αS1

β〉 Q2αβ = 〈S2
αS2

β〉
Pαβ = 〈S1

αS2
β〉 +

1

β1β2
εαδαβ εα = β1β2(Pαα − qc).

(21)

Now if we have p(1) = pd we can make the permutation S1
1 ↔ S1

2 , which is not a natural
permutation of the Hamiltonian, leaving the matrix Q̂ unchanged. Since ε appears only in the
equation for the diagonal term Pαα (i.e. pd within the Parisi ansatz), this implies

p(1) = 〈S1
1S2

2 〉 = 〈S1
2S2

2 〉 = pd → ε = 0. (22)

So we see that ∂F (qc)

∂qc
= 0 is true for all these solutions, and noticing that they approach

continuously the free solutions in the limit of zero constraint we can safely claim that all these
solutions have the same free energy of the free problem.

As stated above, we have looked for solutions approaching continuously (20) in the limit
of equal temperatures, so we made some variational attempts with finite RSB for the matrix
P . Two facts emerged from this analysis: (i) if we allow p(1) �= pd the variational solution is
always attracted by a solution with a positive free-energy cost independently of the temperature
difference, so we discard it; (ii) if we force the variational trial function to have p(1) = pd we
always obtain a negative free-energy cost.

This last result is absurd from a physical point of view since by imposing the constraint
we are reducing the configuration space, but in a variational computation it may occur if our
trial function does not approach closely enough the true maximum (one of the subtleties of the
replica trick is that one has to maximize and not minimize the free energy). The fact that even
very complex variational functions showed negative free-energy cost made us suspect that the
maximum had zero free-energy cost, so we turned to directly solving the SP equation near the
critical temperature.

Having in mind the equal temperature case, we looked at solutions with the structure
depicted in figure 2: in the small-x region the three functions q1(x), q2(x) and p(x) are all
different until they reach the point xc where p(x) = pd = qc; then, for x greater than xc,
p(x) remains constant while q1(x) and q2(x), after an intermediate plateau, are connected
continuously to the corresponding free Parisi solutions. These solutions are thought to exist
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Figure 2. A qualitative sketch of the solutions. In the small-x region they are all different until
the point xc where p(x) = pd = qc, for x > xc p(x) is constant and equal to qc, while q1(x) and
q2(x), after an intermediate plateau, are joined continuously to the corresponding free function;
qc can take values between zero and some qc max at which the two plateaux of the function at the
higher temperature merge. At zero order the slope of the functions is 1 in the first region and 1/2
in the intermediate ones.

for values of the constraint from zero to a maximum value where the two plateaux of the
function at the higher temperature merge (T1 > T2 in figure 2).

We postpone to section 5 the discussion of a consistency problem concerning such a
structure for the solutions.

In the isothermal case the functions in the small-x region do not depend on the value of
qc, which only acts as a knife that fixes the position and length of the intermediate plateaux; to
the order we compute we cannot say if this is true even for the two-temperature problem, but
we believe that it is. It is important to notice that these solutions, provided they actually exist,
intrinsically display a zero free-energy cost due to the equality p(1) = pd as in the isothermal
case (see equation (22)).

We checked that, to the fifth order in the expansion in the order parameter, it is possible
to find non-chaotic solutions with the structure described above. In the following we sketch
the essential features of the calculation.

The expression for the free-energy functional truncated to the fifth order allows us to
compute the functions to the second order in the regions before the starting point of the large
plateau because these regions already span an interval of order one in the reduced temperatures.
Instead, the value of the plateau can be evaluated to the third order as it spans a region of order
zero in the reduced temperature.

The SP equations can be solved in terms of the Parisi functions q1(x), q2(x) and p(x)

expanded in powers of x; one can then use the terms proportional to x3 and higher to determine
the functions in the small-x region and the terms proportional to x to determine the value of the
plateau. We determined the functions in the small-x region and then checked such functions
joined with the free Parisi solutions to satisfy the equations.

To the fifth order in Q̂ the SP equations display terms proportional to x and x3, plus
constant terms due to the presence of the intermediate plateau for x > xc. Having determined
the functions in the small-x region using the x3 terms we had to check nine coefficients to be
zero: three proportional to x, one for each of the three equations for q1(x), q2(x) and p(x)

in the small-x region; two proportional to x in the regions of the intermediate x from the two
equations for q1(x), q2(x); and four belonging to the same regions corresponding to the x3

and constant terms.
After a tedious but straightforward computation all these coefficients turned out to be

zero. However, while the coefficients of x, x3, . . . in the equations for q1(x) and q2(x) are
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null, independently of the value of ω, u, v, y . . ., the corresponding coefficients in the equation
for p(x) only cancel provided the following relationships hold:

1 − v

ω2
= 0 1 − 3v2

ω4
+

2z

ω3
− 2vy

ω4
+

2s

ω3
= 0. (23)

The constant terms in these relationships are the coefficients of (τ1 −τ2)2 and (τ1 +τ2)(τ1 −τ2)2

in the expansion of 4τ12.
The free-energy difference has been evaluated either directly on the maximum and both

thermodynamically integrating the energies (that have a much simpler expression in the order
parameter) with respect to the temperatures. It turned out to be proportional to the left-hand
sides of (23), so that it is zero when relations (23) hold. This is consistent with the previous
statement that the structure of the solutions is intrinsically non-chaotic; indeed, it implies that
we cannot choose the coefficients ω, u, v, y . . . to have a positive free-energy cost and at the
same time to satisfy the SP equations.

The expressions of q1(x), q2(x) and p(x) in terms of ω, u, v, y . . . are reported in the
appendix.

4. Exact results: the constraint-independent cancellations

In this section we prove that a particular set of cancellations in the SP equation of p(x) is
verified at all orders in the SK model. Expanding the equation in powers of x, we must find
that the coefficient of each power equals zero. We concentrate on the coefficient of x, and in
particular on those terms in the coefficient of x that do not depend of the value of the constraint
qc, but only on the temperatures of the two systems. These terms must sum up to zero. It will
be proven that these constraint-independent cancellations hold at any order in the SK model.
We will see that these cancellations are the origin of the relationship (23); this means that
going to higher order we will encounter relations between the coefficient like (23) such that
they are verified by the corresponding coefficients of the SK model.

One should not forget that to verify the SP equations, other cancellations should be checked
at all orders, while they have been checked only to lowest orders in the computation reported
above; however, it is interesting to notice that at the order we computed we found that these
cancellations hold independently of the parameters ω, u, v, y . . . so one may conjecture that
at higher orders they can always be fullfilled by properly tuning the functions in the small-x
region. According to this conjecture, for any given spin-glass model the only relevant condition
for the existence of the non-chaotic solutions is that the constraint-independent cancellations
we consider here hold at all orders.

The free energy (17) can be written as the sum of the free energies of the free problem
plus a term proportional to P :

F (P ) = − lim
n→0

1

2n

{
Tr(AP 2) +

u

3

∑
ab

P 4
ab +

v

2
Tr P 4 − y

∑
abc

P 2
abP 2

bc

+z Tr P 4(Q1 + Q2) − 3s

n
Tr P 2(Q1 + Q2) Tr P 2

+ 4
3 t

∑
ab

P 3
ab(P Q1 + P Q2)ab

}
(24)

Aab =
(

2τ12 − y

n
(Tr Q2

1 + Tr Q2
2) − s

n
(Tr Q3

1 + Tr Q3
2)

)
δab + ω(Q1 + Q2)ab

+v(Q2
1 + Q2

2 + Q1Q2)ab + z(Q3
1 + Q3

2 + Q1Q2
2 + Q2Q2

1)ab
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− s

n
(Tr Q2

1)(2Q1 + Q2)ab − s

n
(Tr Q2

2)(2Q2 + Q1)ab +
2

3
t (Q3

1ab + Q3
2ab).

(25)

The equation one obtains differentiating with respect to P is

−∂F (P )

∂Pab

= (AP )ab + 2
3 uP 3

ab + v(P 3)ab − yPab((P 2)aa + (P 2)bb) + 1
2 ε δab = 0. (26)

In the last equation we neglected the fourth order terms which contain powers of P greater than
one, as in reality their order is higher. We are assuming that qc is of the order of magnitude of
the self-overlap in the free case, i.e. of the order of τ1 and τ2. The structure of the matrix P

(explicitly the equality pd = p(1)) implies that, even if P is of order one, its powers Pn are
of order 2n − 1 and not of order n. Being (p

(n)
d , p(n)(x)) the Parisi function associated with

P n, we know that the quantity p
(n)
d − p̄(n) equals (pd − p̄)n, i.e. it is proportional to q2n

c . Now
p(n)(x) is different from p

(n)
d only on a region of order one and we see immediately that Pn

must be of order 2n − 1 in qc.
Expressing (26) in q1(x), q2(x), p(x) and expanding in powers of x we have terms

proportional to x and x3 in the small-x region. We determined the function p(x) using the
x3 terms and thus we must check the x ones to be zero. These are generated by (AP )ab and
Pab((P 2)aa + (P 2)bb). Then the equation we have to check is

(ad − ā)p(x) + (pd − p̄)a(x) + 2(p2
d − p̄2)p(x) = 0 (27)

where (ad, a(x)) is the Parisi function associated with the matrix A defined in (25). This
equation must really hold only for the terms proportional to x and we may more correctly
write it substituting q(x) and p(x) with their derivative in zero, eliminating the x dependence.

The lhs of (27) displays terms explicitly proportional to powers of qc and others that
depend only on τ1 and τ2; the former terms cancel irrespective of the values of ω, u, v, y . . .

while the latter sum up to zero, provided that the relations (23) hold.
Since at zero order we have p′(0) = 1 it is easily seen that these constraint-independent

terms belong only to (ad − a). It is quite natural that their cancellation depends crucially
on the structure of the model (i.e. on the coefficients ω, u, v, y . . .) because they cannot be
controlled by properly tuning the solutions in the small-x region. For completeness we report
the qc-independent terms belonging to the quantity ad − ā evaluated directly from (25) which
is the origin of the relationships (23)

ad − ā = 1

2

(
1 − v

ω2

)
(τ1 − τ2)2 +

1

2

(
1 − 3v2

ω4
+

2z

ω3
− 2vy

ω4
+

2s

ω3

)
(τ1 + τ2)(τ1 − τ2)2.

(28)

We will prove that the constraint-independent terms in ad − ā are null at all orders in the SK
model.

According to the previous discussion the matrix A is defined as the sum of all the P -
independent matrices X that appears in the free-energy functional in the form Tr XP 2 (actually
the expression (25) is truncated to third order in the order parameter, because it is derived
from (17) which is in turn the free-energy functional truncated to the fifth order). Therefore A

is related to the second derivative of F with respect to P . By direct inspection one verifies that
Aamδbn is equal to ∂2F /∂Pab∂Pmn plus terms that depend explicitly on P . We are interested
in the qc-independent part of A so we can consider the limit qc → 0 where they become equal.
Therefore we have to compute ∂2F /∂Pab∂Pmn in the limit of zero constraint (i.e. P → 0).
The solutions reduce continuously to the free ones in this limit so we can safely compute it for
P = 0.



5542 T Rizzo

Since ∂2F /∂Pab∂Pmn is a component of the Hessian of F , it is the main ingredient to
calculate the spatial correlation functions between states at different temperatures of a finite-
dimensional spin glass in a Gaussian approximation around mean-field theory. In this context
it has been previously computed by Kondor [16]; therefore the particular cancellations we are
dealing with are exactly verified at all orders for much the same reason that at zero-loop order
the overlap of the spin correlations at two different temperatures is infinitely long ranged,
whatever the difference between them.

One can easily convince himself that, when P = 0, (ad − ā) is proportional to the
minimum eigenvalue of ∂2F /∂Pab∂Pmn, i.e. to the inverse of the correlation length. Therefore
the computation we shall sketch below is a completely equivalent rephrasing of Kondor’s
computation.

Let us proceed to evaluate (ad − ā); following Kondor, we start noticing that the Hessian
is related to the four-point connected correlation functions

nT1T2Aamδbn = nT1T2
∂2F

∂Pab∂Pmn

= δabδmn − 1

T1T2

(〈Sa
1 Sb

2 Sm
1 Sn

2 〉 − 〈Sa
1 Sb

2 〉〈Sm
1 Sn

2 〉). (29)

The first identity holds because P is zero; exploiting again this relation we can evaluate the
rhs of (29):

nT1T2Aamδbn = δabδmn − 1

T1T2
(δamδbn + deltaam(1 − δbn)Q2bn

+δbn(1 − δam)Q1am + (1 − δam)(1 − δbn)Q2bnQ1am) (30)

Aab =
∑
mn

(Aamδbn)δmn = 1

T 2
1 T 2

2

(T1T2 − 1 − Q1ab − Q2ab − (Q1Q2)ab). (31)

Now, given a generic ultrametric matrix A, the quantity ad − ā is the eigenvalue corresponding
to the eigenvector with constant coordinates so we have

ad − ā = 1

T 2
1 T 2

2

(T1T2 − 1 + q̄1 + q̄2 − (q̄1)(q̄2)) = 0 (32)

where in the last identity we used the exact relation [26]1 q̄Parisi = 1−T . Note that this relation
holds because we have assumed that in the large-x region the functions q1(x) and q2(x) are
exactly equal to the standard Parisi solutions at the corresponding temperatures.

5. Structural consistency

In this section we discuss a problem of consistency related to the structure we propose for the
solutions. The essential features of the problem have been presented in the introduction. It can
be view as a necessary, but not sufficient, condition to solve the SP equations. We will show
that this necessary condition is fullfilled at all orders by the solutions we propose. As said in
the introduction this result is completely independent of the result of the previous section.

In the following we will use the SP equations expanded to the lowest order sufficient to
clarify the nature of the problem but the results we will obtain are valid at all orders. The SP
equations for the single system problem are

2τ1Qab + (Q2)ab + 2
3 Q3

ab + (Q3)ab − Qab((Q2)aa + (Q2)bb) + · · · = 0. (33)

The lhs is a sum of all the possible covariants of Q. A covariant is a two-index object built in a
permutational covariant way from the matrix Q; given any permutation π between the replica
indices the mathematical definition of a covariant M is

M(πQ) = πM(Q). (34)
1 This relation is equivalent to Sompolinsky’s χ(0) = 1 in [26].
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Figure 3. (a) A simple hierarchical matrix composed of nine blocks of the same size with
1 = 2 = 3 = qD and A = B = C = qOD. The matrix is invariant under block permutations like
those represented in (b), (c) they can be used to prove separability.

If the matrix Q is a hierarchical matrix, all its covariants are hierarchical matrices with the
same structure of Q, i.e. with the same set of block indexes m’s; for instance, if the Parisi
function q(x) associated with Q has a plateau for x greater than some x1 the Parisi functions
associated with any of its covariants will display a plateau in the same region.

This property of the Parisi matrices can be understood by looking at figure 3: we have a
simple hierarchical matrix Q composed of nine blocks of the same size; the components of a
single block are all equals, the three blocks on the diagonal are equal to qD and the six blocks
off the diagonal are equal to qOD.

In figure 3 two block permutations are also represented which leave the matrix Q

unchanged; these permutations can be used to prove that any covariant of Q has its same
structure. For instance, if we consider the first permutation and apply to it the definition of
covariant (34) together with the fact that this permutation verifies π(Q) = Q, we obtain that
πM = M . Since this permutation exchanges blocks 1 and 2, the blocks corresponding to 1
and 2 in M are equal, as the blocks corresponding to B and C; using other permutations of this
kind we can prove that any covariant M is a hierarchical matrix with the same structure of Q.

This property goes under the name of separability or overlap equivalence [25] because of
its physical meaning; it is not clear if it is a condition to solve the SP equation, but, together
with stochastic stability, it is likely to be the origin of ultrametricity.

The SP equation for two systems at different temperatures is

2

(
τ1Q1 τ12P

τ12P τ2Q2

)
ab

+ (Q̂2)ab + 2
3 Q̂3

ab + (Q̂3)ab + · · · = 0 (35)

where the indices (a, b) range from 1 to 2n. All the terms—excluding the first—in the
previous equation are identical to those of the SP equation for a single system (33), provided
one substitutes the covariants of Q with the corresponding covariants of Q̂. Expressing the
covariants of Q̂ in terms of Q1, Q2 and P the previous equation is

2

(
τ1Q1 ab τ12Pab

τ12Pab τ2Q2 ab

)
+

(
(Q2

1 + P 2)ab (P (Q1 + Q2))ab

(P (Q1 + Q2))ab (Q2
2)ab

)
+ 2

3

(
Q3

1 ab P 3
ab

P 3
ab Q3

2 ab

)

+

(
(Q3

1 + P 2(2Q1 + Q2))ab (P 3 + P (Q2
1 + Q2

2 + Q1Q2))ab

(P 3 + P (Q2
1 + Q2

2 + Q1Q2))ab (Q3
2 + P 2(2Q2 + Q1))ab

)

+ · · · = 0 (36)

where the indices (a, b) range from 1 to n. According to the previous equations we have that
the equation for Q1 is

2τ1Q1ab + (Q2
1)ab + P 2

ab + 2
3 Q3

1ab + (Q3
1)ab + ((2Q1 + Q2)P 2)ab + · · · = 0. (37)
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Notice that P always appears in even power in the invariants of the free energy. This is
connected with the fact that each mute index of Q̂ must appear an even number of times in
zero magnetic field.

The consistency problem we want to address is that the previous equations do not admit
a solution for any parametrization of the matrices Q1, Q2 and P .

Let us start considering the simplest case where Q1, Q2 and P are 1RSB Parisi matrices
with different breaking points. If we want to solve (37) to second order we must consider its
first three terms. The first two are 1RSB matrices with breaking point xQ1 , while the second is
a 1RSB matrix with breaking point xP . If they are to sum up to zero the only two possibilities
are: (a) P = 0, which is the trivial one, or (b) xQ1 = xP .

Going to the next order we encounter the last term in which Q2 also appears, and again,
if we want a solution with P �= 0, we must impose xQ2 = xQ1 = xP . Therefore, before
solving (37) we already know that the only consistent non-trivial solution must have all equal
breaking points.

Generalizing to an arbitrary number k of RSB steps we found that a consistent
parametrization for the matrices Q1, Q2 and P can be obtained fixing

m
Q1
i = m

Q2
i = mP

i ∀ i = 1, . . . , k. (38)

In the limit of infinite RSB steps the three matrices are parametrized by the functions
q1(x), q2(x) and p(x) which are continuous and can eventually display constant parts
(plateaux). In this case the consistent parametrization (38) corresponds to imposing that,
if one of the three function displays a plateau, the other two functions must display a plateau
of the same length located at the same position.

Looking at figure 2 it is clear that our parametrization is not of the type described; thus,
we must check its structural consistency. To clarify what kind of problems we may encounter
with such a structure for the solutions let us go back to equation (37).

To second order we must retain the first three terms. For x < xc we have no problems
because all the three terms are varying, for x > xc P 2 become constant but, as Q2

1 has the
same structure of Q1, we should reasonably be able to solve the equations.

The problems arise at third order due to the presence of the last term which is proportional
to Q2. Let us consider the region of the second plateau of the function q1(x) in figure 2. In
this region all the terms in (37) that depend on P and Q1 are constant because q1(x) and p(x)

are constant. Instead the last term (2Q1 + Q2)P 2 that depends on Q2 will vary in general until
the point x2 max where the second plateau of q2(x) starts.

Clearly if (2Q1 + Q2)P 2 varies, equation (37) cannot be verified in both the two regions
x1 max < x < x2 max and x2 max < x < 1.

The same problem is present in the region between the ending point of the intermediate
plateaux of q1(x) and q2(x), in which as one function varies the other is constant.

In a few words, the problem is that the equation for q1(x) displays terms depending on
q2(x) which, for x > xc, have a completely different structure. The same problem is present
for the equation of q2(x) and p(x).

In the following it is shown that the equality p(1) = pd allows us to solve these problems
of structural consistency at all orders. For instance, it implies that all the terms of the form
P 2pQ

q

1Qr
2 display a plateau for x > xc so that any dependence on the structure of q1(x) and

q2(x) in this region is removed.
The last statement can be checked by direct inspection evaluating the product AP , given

that P satisfies p(x) = pd for x > xc and A is a generic Parisi matrix. It turns out that this
product has the same structure of P , i.e. we have (ap)(x) = (ap)d for x > xc.

In general, through p(x) = pd the lhs of (37) can be recast order by order as a sum of
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Parisi matrices that have exactly the same structure of Q1, even if they depend on P and Q2.
The same is true for the SP equation of Q2 and P .

These recast terms are just the corresponding components of the covariant of Q̂. For
instance, in the equation for Q1 the corresponding component of the covariant Q̂3 is
(Q3

1 + P 2(2Q1 + Q2)). The first term has the structure of Q1 with two plateaux located at the
same position while the second is constant for x > xc; consequently (Q3

1 + P 2(2Q1 + Q2))

has the structure of Q1.
In other words, structural consistency is ensured because when p(1) = pd the matrix Q̂

is separable. Writing one of its covariants M(Q̂) as

M(Q̂) =
(

M1(Q1, Q2, P ) M12(Q1, Q2, P )

M12(Q1, Q2, P ) M2(Q1, Q2, P )

)
(39)

separability for Q̂ means that M1(Q1, Q2, P ) has the same block structure of Q1,
M2(Q1, Q2, P ) has the same block structure of Q2 and M12(Q1, Q2, P ) has the same block
structure of P .

In general, a matrix Q̂ composed of three hierarchical matrix Q1, Q2 and P is not globally
separable; a sufficient condition for this is that the three matrices have the same structure, i.e.
that they verify equations (38). This however is not our case.

To prove that the equality p(1) = pd is a sufficient condition for the separability of Q̂

let us take a look at figure 4. Here the matrix Q̂ =
(

Q1 P

P t Q2

)
is sketched qualitatively

according to figure 2.
The block index mc in figure 4 corresponds to xc in figure 2. For mc < m < n (0 < x < xc)

the three matrices Q1, Q2 and P have the same structure, i.e. the same set of m’s (for simplicity
in (4) there is only the intermediate index mi between mc and n).

For 1 < m < mc (xc < x < 1) the n/mc blocks of size mc in Q1 have an internal structure
different from the corresponding n/mc blocks in Q2, while the n/mc blocks in P have all their
components equal to pd .

In particular the crossed blocks in Q1 are identical to the blocks of the same size in the
standard Parisi solution at temperature T1; those in Q2 correspond to the standard solution at
T2.

If we consider one of the blocks of size mc in the matrix Q1, say the first, we can make
permutations like those of figure 3 between its inner blocks leaving Q1 unchanged. The
invariance under this block permutation ensures that any covariant of Q1 has the same structure
of Q1.

Now, to a block of size mc in Q1 corresponds a block of size mc on the diagonal of P

components of which are all equal to pd , this ensures that not only Q1 but also the global
matrix Q̂ is left unchanged by the same block permutations.

We recall how separability follows from the invariance under these block permutations.
Invariance means πQ̂ = Q̂, so the definition of covariant, i.e. M(πQ̂) = πM(Q̂), implies
πM(Q̂) = M(Q̂). These permutations exchange blocks of M(Q̂), so that the last equality
means that these blocks are equal and M(Q̂) have the same structure of Q̂.

In other words, the structure of a matrix like Q̂ or M(Q̂) is unequivocally determined by
the set of block permutations that leave it unchanged, and the equality p(1) = pd implies that
the set of invariant block permutations of M(Q̂) coincide with that of Q̂.

Instead, if pd �= p(1), in order to leave P unchanged under the permutations between
the internal blocks of, say, the first block of size mc of Q1, we should make the same block
permutations on Q2. Since Q2 has a different block structure from Q1, it would not be left
unchanged.
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Figure 4. The global matrix Q̂. The block index mc corresponds to xc in figure 2. For mc < m < n

(0 < x < xc) the three matrices Q1, Q2 and P have the same structure, i.e. mi is identical for the
three matrices. For 1 < m < mc (xc < x < 1) the n/mc blocks of size mc in Q1 have a different
internal structure from the corresponding n/mc blocks in Q2, while the n/mc blocks in P have all
their components equal to pd .

6. The SK model with soft-spin distribution

In this section we shall apply the approach of coupled replicas to the generalization of the SK
model to soft spin distribution. This model can both be mapped onto the SK model by a proper
redefinition of the parameters ω, u, v, y . . . appearing in the free-energy functional (17).

In the case of continuous spins each invariant belonging to the term ln Tr exp
[ ∑

ab Q̂SaSb

]
in the free-energy functional must be multiplied by a proper product of cumulants of the soft-
spin distribution. Rescaling the order parameter by a factor 〈S2〉 the mapping goes as follows:

ω → ω = 1 v → v = 1 u → u = 〈S4〉2

〈S2〉4

y → y = 〈S4〉
〈S2〉2

z → z = 1 s → s = 〈S4〉
〈S2〉2

t → t = 〈S4〉2

〈S2〉4
.

(40)

Therefore the two relations (23) keep on being satisfied and, to the order we computed absence
of chaos, it is stable against soft-spin distribution. It is important to remember that the constant
terms in (23) belong to the expansion of τ12 in powers of τ1, τ2, which is the same as in the
SK model because of the rescaling of the order parameter. Let us comment that, for technical
reasons, to consider the free energy to the fifth order allows us to obtain a result valid up to
sixth order. We showed that the relation p(1) = pd implies exactly ε = 0; this statement can
be checked at all orders by using the SP equations for p(1) and pd [24]. Substituting the first
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into the second one obtains

ε = 2(pd − p(1))
(
ad − a(1) + 4

3 (p2(1) + p2
d + p(1)pd) + 2v(p

(2)
d − p(2)(1)) − 2yp

(2)
d

)
. (41)

So ε is equal to the difference between p(1) and pd multiplied by a second-order factor so
that, if we prove that p(1) = pd to order n, the free-energy difference will be zero, at least at
order n + 4.

7. Conclusion

The present paper’s main results has been to phrase a consistent analytical picture for absence
of chaos in temperature in mean-field spin glasses and to collect evidence through direct
computation that this picture actually holds.

We made use of a model of two coupled systems that. through the replica trick, can be
phrased as a variational problem with an order parameter analogous to the standard one. We
proposed a set of solutions of the model and showed that they are intrinsically non-chaotic
due to their structure. The actual existence of these solutions is therefore the main problem.
It has been checked to fifth order in the reduced temperature for the SK model and for its
generalization with soft-spin distribution.

A particular set of cancellations in the SP equations turned out to hold through subtle
relations between the parameters of the models; however, it was proven that they hold exactly
at all orders in the SK model in connection with the zero-loop expansion of replica field-
theory [16].

Other cancellations were checked only at finite order: they constitute the main open
problem. In this respect we recall that the failure of some cancellations, even at a very high
order, will destroy the whole construction, leading to a dramatic change in the physical picture.
The solutions will become unstable; therefore, even near the critical temperature, the function
P (qT 1T 2) will reduce in the thermodynamic limit to a δ function centred at zero.

We also considered the possibility that the non-trivial structure we propose for the solutions
be incompatible with the SP equations. In the introduction we phrased the problem through
the notion of structural consistency. It is a necessary condition to solve the SP equations. We
have proven that the solutions we propose satisfy this condition at all orders in the expansion
in powers of the order parameter. Furthermore, this condition imposes that the corrections one
obtains, considering higher powers in the expansion in the reduced temperature, change the
solutions quantitatively but not qualitatively. In particular, the relation p(x) = pd for x > xc

holds exactly; the approximation is in the exact value of xc. Also the starting points of the
intermediate plateaux of q1(x) and q2(x) at all orders are exactly equal to xc.

Though these solutions were obtained in the context of coupled systems, they are solutions
of the SP equations for uncoupled systems too. Therefore they enter the average over solutions
in equation (14) implying a non-trivial P (qT 1T 2).

However, we warn the reader that nothing like the relation P (q) = dx/dq can be written
for these solutions. This relation follows from the possibility of substituting the average over
solutions in (13) with a summation over the indices evaluated on the standard Parisi solution.
Instead, in the case of two or more systems this is impossible because the various solutions
cannot be obtained one from the other by a permutation of the indices [24].

What is implied by our results is that P (qT 1T 2) has a non-zero support from zero to a
maximum value pmax = q1 max + O(τ 2), where q1 max is the self-overlap of the states at the
higher temperature. The small positive corrections to this last relation remain small at any
temperatures; actually, it can be proven that pmax = q1 max holds at all temperatures at the level
of accuracy of the Parisi–Toulouse approximation [27].
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On general grounds it is reasonable that, like the standard Parisi solution, these solutions
encode much more information than the mere value of the free energy; actually, it seems that
they lead to a quantitative description of the bifurcation picture for the free-energy landscape
discussed in the introduction [27].
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Appendix

In this appendix we report the solutions as evaluated by solving the SP equations to fourth
order in the reduced temperatures for a given constraint qc intended to be of the same order of
magnitude of the self-overlap of the states (i.e. τ1 or τ2). From these expressions the maximum
value of qc can be readily obtained as the value for which the first and second plateaux of the
function corresponding to the system at the higher temperature merge:

for 0 � x � qc

(
u

ω
+

3uv − 8tω

2ω3
(τ1 + τ2)

)

q1(x) =
(

ω

u
− (4τ1 + 2τ2)uv − (12τ1 + 4τ2)tω

2u2ω

)
x

p(x) =
(

ω

u
− 3(τ1 + τ2)uv − 8(τ1 + τ2)tω

2u2ω

)
x

for qc

(
u

ω
+

3uv − 8tω

2ω3
(τ1 + τ2)

)
� x � qc

(
2u

ω
+

5uv − 12tω

ω3
τ1 +

uv − 4tω

ω3
τ2

)

q1(x) =
(

1 − uv − 4tω

2uω2
(τ1 − τ2)

)
qc p(x) = qc

for qc

(
2u

ω
+

5uv − 12tω

ω3
τ1 +

uv − 4tω

ω3
τ2

)

� x � 2uτ1

ω2
+

τ 2
1

ω4
(u(2u + 3v + 2y) + 6uv − 16tω)

q1(x) =
(

ω

2u
− 6uv − 16tω

4u2ω
τ1

)
x p(x) = qc

for
2uτ1

ω2
+

τ 2
1

ω4
(u(2u + 3v + 2y) + 6uv − 16tω) � x � 1

q1(x) = τ1

ω
+

τ 2
1 (2u + 3v + 2y)

2ω3
− τ 3

1

24ω5
(−48u2 − 144uv − 108v2

−64uy − 144vy − 48y2 + 120sω + 208tω + 48zω) p(x) = qc.

The function q2(x) can be obtained from q1(x) exchanging τ1 with τ2. Given that the higher
temperature is T1, the maximum value of qc for which the solutions exist works out to be

qc max = q1 max +
16tω − 6uv

4u2ω2
(τ2 − τ1)τ1.

The above expression is valid to second order in the reduced temperatures since the total number
of matrix elements with value qc is of order one due to the equality p(1) = pd . Therefore,
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the first order maximum overlap is equal to the self-overlap qEA of the system at the higher
temperature with positive higher-order corrections.

This quantity is accessible to direct measurement in numerical simulations and a
comparison can be made, provided that the trivial order-parameter rescaling which has led
us from (7) to (17) is taken into account. It is important to notice that this rescaling does not
change the qualitative behaviour of the solutions, in particular the three functions q1(x), q2(x)

and p(x) remain different in the small-x region.
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